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Near-infrared calibrations were developed for the instantaneous prediction of the chemical and
ingredient composition of intact compound feeds. Two rather different instruments were compared
(diode array vs grating monochromator). The grating monochromator was used in a static mode in
the laboratory, whereas the diode-array instrumentsbetter adapted to online analysisswas placed
on a conveyor belt to simulate measurements at a feed mill plant. Modified partial least squares
(MPLS) equations were developed using the same set of samples analyzed in the two instruments.
Sample set 1 (N ) 398) was used to predict crude protein (CP) and crude fiber (CF), while sample
set 2 (N ) 393) was used for the prediction of one macroingredient (sunflower meal, SFM) and one
microingredient (mineral-vitamin premix, MVP). The standard error of cross-validation (SECV) and
the coefficient of determination (R2) values for CF were better using the monochromator instrument.
However, results obtained for CP, SFM, and MVP using the samples analyzed in the diode-array
instrument showed similar or even greater accuracy than those obtained using samples analyzed in
the grating monochromator. The excellent predictive ability [R2> 0.95; RPD (ratio of standard deviation
to SECV) > 3] obtained for CP, CF, and SFM opens the way for the online use of NIRS diode-array
instruments for surveillance and monitoring in the manufacture, processing, and marketing of
compound feeds. R2, RPD, and SECV values for MVP showed similar performance for both
instruments. Although RPD values did not reach the minimum recommended for quantitative analysis,
results are encouraging for an ingredient present in feed compounds in such very low amounts.
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INTRODUCTION

Since the publication of the White Paper on Food Safety in
2000 (1), the manufacture of industrially produced compound
feeds has increasingly been regulated by legislation in a number
of areas (ingredients declaration, official inspection and controls,
labeling, traceability, undesirable substances, prohibited ingre-
dients) (2). Formal and informal official inspection programs
and self-control requirements applied to the manufacture of
compound feeds include not only checks on incoming raw
materials and finished products but also the testing of in-process
materials (i.e., homogeneity, formulation errors, labeling errors,
etc.). The implementation of these checks on the huge amount
of compound feeds circulating across European frontiers is being
hampered by the lack of affordable analytical methods that can
be applied at different key points in the feed industry.

Traditional quality controls in the feed processing industry
have relied heavily on manual sampling followed by physical/
chemical measurement. These methods often give rise to a time-

lag between product processing and the actual result, culminating
in a product possibly having to be downgraded later (3), with
an increasing number of consumer complaints and product
recalls (4).

Recently, many feed manufacturers have started to use near
infrared reflectance spectroscopy (NIRS) for the analysis of raw
materials and finished compound feeds. This technology is now
widely recognized as an affordable, fast, nondestructive, and
nonpolluting technique for the analysis of compound feedstuffs
(5, 6). However, European Authorised Officers and compound
feed manufacturers are displaying a growing interest in spot,
on-site measurements that can be used not only for regulatory
official analysis but also for surveillance and monitoring
purposes (4).

Traditional and modern NIRS laboratory instruments have a
number of constraints (e.g., lack of robustness leading to poor
adaptability to harsh environments, low scanning speed, high
cost, nonportability) that hinder their use in industrial plants or
in general outside the laboratory. However, recently developed
spectrometers based on array detectors offer a range of* Corresponding author. E-mail: g82feahe@uco.es.
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advantages, including ability to record a full spectrum at high
speed, lack of moving parts, wavelength repeatability and
compatibility with fiber optics for flexible process interfacing,
and lower price (7). The extension of diode-array technology
to the long-wavelength NIR (beyond 1100 nm) was until
recently hampered by the relatively high cost of detector
materials (8). However, falling costs have increasingly facilitated
the use of diode-array spectrometers at wavelengths formerly
accessible only by scanning NIR instruments. Array detectors
operating in the near-infrared region are potentially useful for
process measurement because they are more rugged and better-
suited to online applications, even under aggressive condi-
tions (9).

Although diode-array spectrometers appeared in the 1990s,
scientific information regarding their performance in the analysis
of animal feeds is very limited as compared to the data available
on grating monochromators. Some early studies addressed the
use of this technology on harvesters for analysis of grains and
forages (10–14) and also for mixed rations (15). However, no
scientific information has hitherto been available regarding the
viability of diode-array spectrometers for on-site quality control
in the feed compound industry.

In this industry not only the analytical control of traditional
parameters such as moisture, crude protein, crude fiber, crude
fat, etc. is required. The prediction of ingredient composition
is also necessary for compliance with current legislation (16)
and with the manufacturers’ interest. Although they are no
longer bound to list all ingredients used for the consumer in
general, this information must be available if required by an
official inspection.

The aim of the present paper is to carry out a pilot study to
compare the performance of an NIR diode-array instrument
working on a conveyor belt with that of a traditional laboratory
monochromator, for the online monitoring of chemical and
ingredient composition in intact compound feeds.

MATERIAL AND METHODS

Samples and Reference Data. Compound feedstuff samples were
collected from a Spanish feed plant, over an extended period of time
(2001–2005), thus representing the variability encountered in the real
production process. A set of finished compound feed samples was used
to develop equations predicting chemical (set 1, N ) 398) and ingredient
composition (set 2, N ) 393). Feed samples were manufactured for
different animal species (cattle, sheep, goat, pig, poultry, rabbit, and
pet), using different forms of presentation (meals, crumbs, pellets of
varying sizes, extruded, etc.).

Chemical reference data for crude protein (CP) and crude fiber (CF)
were determined by Association of Official Analytical Chemists
(AOAC) methods 976.06 and 978.10, respectively (17). Reference data
regarding ingredient composition (%) of each compound feedstuff were
provided by the feed manufacturer.

NIRS Analysis. For comparative purposes, all samples were
analyzed with two different instruments and devices: a diode-array
spectrometer placed on a conveyor belt and a scanning grating
monochromator.

Diode-Array Spectrometer: CORONA-Haldrup. The Haldrup sta-
tionary module attached to the CORONA 45 VIS+NIR (Carl Zeiss,
Inc.) diode-array spectrometer (Figure 1) was used to simulate “on-
line” measurements. The samples passed along the conveyor belt
underneath the spectrometer, which is a postdispersive optical device.
This instrument passes all specified wavelengths through the sample
at the same time, and records all absorbances simultaneously (18). The
diode array consists of very small diodes arranged in a row. Each diode
records absorbance for a 400-1690 nm wavelength range. Every 2
nm, absorbance values were recorded as log (1/R), where R is the
sample reflectance. White referencing and dark current measurement
was carried out manually by tilting the spectrometer in the opposite

direction from the conveyor belt. All spectra were recorded using CORA
software version 3.2.2 (Carl Zeiss, Inc.).

Measurement parameters, such as focal distance, conveyor belt speed,
and sample layer thickness, had previously been optimized (19). The
parameters used here were as follows: focal distance ) 13 mm, speed
of conveyor belt ) 8 m min-1, thickness of layer ) 1 cm.

The CORA software was programmed to capture one spectrum per
second; 10 spectra were captured per sample, and the average was used
in calculations.

Scanning Monochromator: FNS-6500. A FOSS NIRSystems model
6500 SY-II scanning grating monochromator (Silver Spring, MD) was
used to measure reflectance spectra from 400 to 2498 nm, every 2 nm
(Figure 2a). This spectrometer typically comprises a dispersive
medium, entrance and exit slits, and imaging components that produce
a parallel beam path. To record a spectrum, a detector located behind
the exit slit must sequentially record the incident light while the
dispersive component or the exit slit is moved (18).

Absorbance values were recorded as log (1/R), where R is the sample
reflectance. The number of scans per sample was 32. Each sample was
measured twice and the mean was calculated. Spectra were recorded
using WINISI II software version 1.5 (Infrasoft International, Port
Matilda, PA). To enable comparison of the performance of the two
instruments, the FNS-6500 range was trimmed to 400–1690 nm.

The FNS-6500 instrument was equipped with a transport module,
which is a device that allows the use of rectangular cells larger than
the traditional ring cups. In this study, the analysis was carried out
using the natural product transport cell, which is a rectangular cell with
internal dimensions of 4.7 cm wide, 20 cm long, and 4.3 cm deep
(Figure 2b). The quartz viewing window (4.7 cm × 20 cm) allows 94
cm2 of the sample surface area to be irradiated.

Development of NIR Calibrations. Calibrations for spectra captured
by the two instruments were developed using WINISI II software
version 1.5 (Infrasoft International, Port Matilda, PA). The modified
partial least-squares (MPLS) regression method was used to obtain NIR
equations for all the studied parameters. MPLS is a variant of partial
least-squares (PLS) regression, which is similar to principal component
regression (PCR) but uses both reference data (chemical, physical, etc.)

Figure 1. CORONA 45 VIS+NIR instrument on the conveyor belt of the
Haldrup stationary module.

Figure 2. Foss NIRSystems 6500 instrument equipped with transport
module and natural cell for unground feedstuffs.
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and spectral information to form the factors useful for fitting purposes
(20). In MPLS, the NIR residuals at each wavelength, obtained after
each factor is calculated, are standardized (divided by the standard
deviations of the residuals at a wavelength) before calculating the next
factor.

When developing MPLS equations, cross-validation is recommended
in order to select the optimal number of factors and avoid overfitting
(21). In all cases, cross-validation was performed by splitting the
population into eight groups.

All multivariate regression equations were obtained using the
standard normal variate and detrending methods for scatter correction
(22). Moreover, four derivative mathematical treatments were tested
in the development of NIRS calibrationss1,5,5,1; 2,5,5,1; 1,10,5,1;
and 2,10,5,1swhere the first digit is the number of the derivative, the
second is the gap over which the derivative is calculated, the third is
the number of data points in a running average or smoothing, and the
fourth is the second smoothing (23).

The statistics used to select the best equations were the coefficient
of multiple determination (R2) and the standard error of cross-validation
(SECV). Another statistic used was RPD, i.e. the ratio of the standard
deviation to the SECV of the reference data (SD) (24). The RPD should
ideally be at least three for quantitative purposes (25).

Before performing calibrations, a spectral outlier detection routine was
followed for the elimination of samples with atypical spectra. The CENTER
algorithm (26) used starts by performing principal component analysis,
which reduces the original spectral information (log 1/R values) to a few
linearly independent variables, thus facilitating the calculation of spectral
distances. Having obtained these new variables, the center of the spectral
population is calculated, together with the distance (expressed as Mahal-
anobis distance H and called global H) from each sample of the initial set
to that center. The algorithm ranks samples according to their distance
from the center of the group. Experience has shown that samples with
distances over three can be considered as potential spectral outliers
(27, 28). This limit (global H > 3) was used here.

When performing PLS regressions, two outlier tests are also
recommended. One of these tests uses the Mahalanobis distance and
calculates the global H. The H calculation during calibration is
constituent-dependent, since it is based on the PLS scores for each
regression equation. To minimize the risk of removing distant but
valuable spectra, only samples with H values greater than 10.0 were
considered as outliers (29, 30). The second test is the Student t test,
which provides criteria for assessing the variation between a predicted
value and its primary chemical value. To avoid having to refer to the
t tables, a rule of thumb is that t values of greater than 2.5 are considered
significant, and those predicted analyses having such large t values may
possibly be outliers (31, 32).

RESULTS AND DISCUSSION

The mean, standard deviation (SD), and range values for
chemical and ingredient composition are given in Table 1. The
wide range and the standard deviation for crude protein and
fiber confirm the wide diversity of compound feedstuffs in the
calibration set. Protein and fiber were selected because both are
considered as the main constituents that must be controlled in
most feed ingredients and, with greater frequency, either weekly
or in every load (33, 34). There is therefore considerable interest
in measuring these parameters online, in a first approach to
quality assurance. Sunflower meal and mineral-vitamin premix
were selected as being representative of materials usually
included in feed formulation in varying amounts.

Spectral Outlier Detection and Interpretation. Database
structure and spectral quality are important aspects of NIR
calibration development (24, 29). Therefore, prior to calibration,
the CENTER algorithm was applied to both sets of samples
studied (sets 1 and 2). The H values should be used to identify
the most extreme spectra. Then a determination needs to be
made as to which spectra are mistakes and which are legitimate,
knowing that samples with the most extreme reference values
will also have extreme spectra (30).

When CENTER algorithm was applied, samples selected as
outliers were rescanned in order to determine whether they were
actually spectral outliers, poorly represented samples, or mis-
scanned samples. After that, the CENTER algorithm was again
applied and spectral outliers (H > 3) were detected. No mis-
scanned samples were detected.

A detailed inspection of the spectral outliers of set 1 showed
that they included extruded compound feeds of varying colors;
extruded feeds are intended for pets and are usually presented
in brown colors. However, these outlier feeds were the only
extruded samples presented in different colors within the
population (Table 2). Traditional chemical analyses of these
samples detected no abnormal values, so color seemed to
account for this outlier identification. Other samples considered
as outliers by both instruments were poultry feeds presented in
crumb form; these were not numerous and were poorly
represented in the population. In addition, several samples were
considered spectral outliers only when scanned with the
monochromator. These samples (pellets with a diameter of 2
mm, intended for milk-fed lambs, and beef cubes to be delivered
on the ground) were also poorly represented in the sample set
as a whole. The monochromator may have classified more
samples as outliers (Table 2) due to lower sampling intensity
resulting from the smaller window size. All set 1 samples
considered as spectral outliers were removed from the calibration
set but not discarded. In all cases, they constituted a small
proportion of the sample set; in the future, as the number of
samples of this kind increases, they will be added and used for
recalibration.

Set 2 samples classed as spectral outliers using both the
CORONA-Haldrup device and the Foss NIRSystems 6500
were also studied. Again, both instruments classed extruded pet
food samples of different colors and poultry-feed samples in
crumb form as spectral outliers. The sample presented in pellet
form, diameter 2 mm, and the cattle-feed samples for delivery
on the ground were also detected as outliers by both instruments
(Table 3). As for set 1, spectral outliers in set 2 were eliminated
but not discarded for the future.

Means, standard deviation, and ranges for CP, CF, SFM, and
MVP in the new calibration sets obtained after outlier elimina-
tion are shown in Table 4. It should be noted that, despite outlier
removal, chemical diversity was maintained in the calibration
sets, as demonstrated by the broad range of analytical values
obtained.

NIRS Calibrations for Prediction of Chemical Composi-
tion. Once the initial population was free of spectral outliers,
MPLS regression equations were obtained. During calibration
development, the calibration set was further refined in terms of
both spectral (H > 10) and chemical outliers (t > 2.5).

Crude protein calibrations developed with the monochromator
instrument displayed only two samples with H values greater
than 10. For crude fiber, only one sample was detected with H
> 10. In both cases, it was confirmed that these samples were
quite different and distant from the rest of the population. With
the diode-array instrument only one sample had an H value
above 10. This was the only sample with a pellet diameter

Table 1. Descriptive Statistics for Set 1 (%) and Set 2 (%)

constituent N mean SD range set

crude protein 398 18.46 3.63 12.40–33.10 1
crude fiber 398 7.91 5.17 1.70–45.63 1
sunflower meal 393 5.82 8.10 0–30.00 2
mineral-vitamin premix 393 0.28 0.22 0–3.00 2
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smaller than 2 mm, and had been classed as a spectral outlier
during the first step (H > 3) when analyzed with the mono-
chromator, thus confirming that it was not well-represented in
the calibration set. For crude fiber, no samples with H > 10
were detected with the diode-array instrument.

The second outlier test during calibration development used
t values. The Studentized residuals from regression models fitted
using least-squares is a very common approach to identifying
discordant observations in linear regression problems (35). Most
often, high t test values here indicate poor laboratory results or
a problem with sample presentation (31, 32). The final frequency
histograms after outlier elimination for crude protein are shown
in parts a1 and a2 of Figure 3 for the monochromator and the
diode-array instrument, respectively. It was found that there were
more t outlier samples with the diode-array instrument, espe-

cially around the mean and in the range from 22.5% to the end.
This suggested that a better coverage of this range is needed in
order to improve predictions for samples in this range. With
regard to chemical outliers for crude fiber, the grating mono-
chromator detected more samples, but most were situated in
ranges of the constituent where there were more similar samples,
possibly indicating that they were redundant. However, fewer
samples were detected as outliers by the diode-array instrument,
and most belonged to the range 11–13%, which was not well
covered (Figure 3b1,2).

Differences between the two instruments in outlier detection
can be found in the technical differences such as measurement
principle. A hypothesis for that could be that each type of
instrument may need a different number of samples in the
calibration set in order to be able to model the intrinsic chemical
and physical characteristics of a given sample.

The performance statistics of NIRS equations, after outlier
removal, for predicting the composition of crude protein and
crude fiber using calibration set 1 for the two different
instruments are provided in Table 5.

Results in Table 5, and also in Table 6, were derived from
the cross-validation, considering this method as an internal
validation. Shenk and Westerhaus (27) report that the SECV is
the best single estimate of the prediction capability of the
equation and that this statistic is similar to the average standard
error of prediction (SEP) from 10 randomly chosen prediction
sets. The SECV value has the advantage over use of one

Table 2. Spectral Outliers of Set 1

FNS-6500 CORONA-Haldrup

samples global H species and physical features of samples samples global H species and physical features of samples

13931 3.085 extr diff colors pets 13931 4.499 extr diff colors pets
13934 3.484 extr diff colors pets 13934 4.180 extr diff colors pets
14443 3.018 extr diff colors pets 14443 5.116 extr diff colors pets
14927 4.406 extr diff colors pets 14927 3.605 extr diff colors pets
14929 3.520 extr diff colors pets 14929 3.419 extr diff colors pets
14933 4.258 extr diff colors pets 14933 3.843 extr diff colors pets
14936 3.854 extr diff colors pets 14936 3.522 extr diff colors pets
10386 3.179 crumbs for poultry 10656 4.203 crumbs for poultry
10656 3.303 crumbs for poultry 10798 3.865 crumbs for poultry
10798 3.545 crumbs for poultry 14403 8.588 crumbs for poultry
10947 3.392 crumbs for poultry 14631 5.304 crumbs for poultry
14404 3.460 crumbs for poultry
14631 5.701 crumbs for poultry
14410 3.671 pellet < 2 mm for lambs
14943 3.010 beef cubes

Table 3. Spectral Outliers of Set 2

FNS-6500 CORONA-Haldrup

samples global H species and physical features of samples samples global H species and physical features of samples

13571 4.545 extr diff colors pets 13571 3.872 extr diff colors pets
13572 4.870 extr diff colors pets 13572 4.616 extr diff colors pets
13489 3.429 extr diff colors pets 13489 4.135 extr diff colors pets
13931 3.827 extr diff colors pets 13931 3.953 extr diff colors pets
13934 3.470 extr diff colors pets 13934 4.827 extr diff colors pets
14443 3.544 extr diff colors pets 14443 4.020 extr diff colors pets
9946 3.122 crumbs for poultry 10304 3.059 crumbs for poultry
10299 3.658 crumbs for poultry 10656 8.794 crumbs for poultry
10656 3.479 crumbs for poultry 10798 3.305 crumbs for poultry
10798 3.024 crumbs for poultry 10874 3.638 crumbs for poultry
14552 3.520 crumbs for poultry 14403 8.020 crumbs for poultry
14631 4.960 crumbs for poultry 14631 5.184 crumbs for poultry
14643 4.152 crumbs for poultry 14657 3.158 crumbs for poultry
14410 3.413 pellet < 2 mm for lambs 14410 4.023 pellet < 2 mm for lambs
10950 3.087 beef cubes 14570 3.231 beef cubes
14570 3.721 beef cubes

Table 4. Descriptive Statistics after Spectral Outlier Elimination for Set 1
(%) and Set 2 (%)

constituent instrument N mean SD range set

crude protein grating 383 18.20 3.32 12.40–33.10 1
crude protein diode array 387 18.24 3.34 12.40–33.10 1
crude fiber grating 383 8.07 5.19 1.70–45.63 1
crude fiber diode array 387 8.04 5.18 1.70–45.63 1
sunflower meal grating 377 5.98 8.16 0–30.00 2
sunflower meal diode array 378 5.87 8.10 0–30.00 2
mineral-vitamin premix grating 377 0.27 0.18 0–3.00 2
mineral-vitamin premix diode array 378 0.28 0.22 0–3.00 2
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single validation (prediction set) to produce a SEP value that
all the samples representing a given population are contribut-
ing to the SECV value. In our case, the use of blind samples
to evaluate the prediction capacity of the calibrations should
be done once the calibrations have a large number of samples
and they become robust enough.

Calibrations for crude protein developed with the diode-array
instrument displayed RPD values higher than the recommended
minimum (25) and very close to those obtained with the
monochromator. The crude protein model developed using the
diode-array instrument accounted for 95% of the variation
existing in the calibration set, showing a very good capacity
for quality control of this parameter. Although the SECV was
somewhat higher (0.70%) with the diode-array instrument than
with the grating monochromator (0.65%), the number of latent

variables (LV) used was lower, which yielded a simpler model.
As indicated earlier, the literature provides no data regarding
the prediction of chemical composition of feedstuffs using diode-
array instruments, so the results obtained may only be compared
with those reported by other authors for grating monochroma-
tors. Results for crude protein obtained in this study compare
quite well with the accuracy of equations reported by Verheggen
et al. (36) with a monochromator and 150 commercial and
ground samples. However, for crude protein De Boever et al.
(37) and Aufrère et al. (38) obtained higher SEP values (1.4%
and 0.96%, respectively) and slightly lower RPD values (3.43
and 4.02, respectively). This may be due to the smaller number
of calibration samples and also to the nature of the samples;
most samples used by De Boever et al. (37) were experimental
feeds made in the laboratory. Other authors (39, 40) developed

Figure 3. Frequency histograms after chemical outlier elimination for crude protein with monochromator (a1) and diode-array instrument (a2) and crude
fiber with monochromator (b1) and diode-array instrument (b2).

Table 5. Cross-Validation Statistics for Predicting Chemical Composition (%)

calibration set cross-validation statistics

constituent instrument N mean SD range SECV R 2 RPD LV

crude protein grating 337 18.06 3.14 12.40–29.70 0.65 0.96 4.83 14
crude protein diode array 335 17.94 3.02 12.40–28.70 0.70 0.95 4.31 10
crude protein grating full range 319 17.99 3.16 12.40–28.96 0.47 0.98 6.72 14
crude fiber grating 327 7.41 4.43 1.70–18.96 0.58 0.98 7.67 9
crude fiber diode array 343 7.38 4.35 1.70–18.96 0.85 0.96 5.12 11
crude fiber grating full range 333 7.76 4.59 1.70–18.96 0.51 0.97 8.83 12

Table 6. Cross-Validation Statistics for Predicting Ingredient Composition (%)

calibration set cross-validation statistics

ingredient instrument N mean SD range SECV R 2 RPD LV

sunflower meal grating 333 5.06 7.46 0–30.00 1.27 0.97 5.88 12
sunflower meal diode array 309 4.02 6.43 0–25.10 0.98 0.98 6.52 15
sunflower meal grating full range 303 4.58 6.99 0–30.00 0.94 0.98 7.44 15
mineral-vitamin premix grating 332 0.26 0.14 0–0.50 0.06 0.77 2.06 11
mineral-vitamin premix diode array 330 0.25 0.14 0–0.50 0.06 0.76 2.03 8
mineral-vitamin premix grating full range 314 0.26 0.14 0–0.50 0.05 0.83 2.46 12
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equations for only one animal species and obtained better SECV
values (0.62% and 0.56%, respectively) than those obtained here
with the diode-array instrument. Nevertheless, White and
Rouvinen-Watt (41) evaluated feeds only intended for mink and
recorded quite high SECV values (1.75%) for crude protein.
However, when using the RPD statistic in order to better
compare studies using populations with different mean and SD,
it was observed that Xicatto et al. (40) reported RPD values of
2.67, not reaching the recommended minimum, while White
and Rouvinen-Watt (41), whose calibration set had a higher SD,
obtained RPD values (3.97) higher than 3 and close to that
obtained here. Cizmar et al. (42), using a larger number of
samples (N ) 650) in calibration sets, obtained good SECV
values (0.5%), but the RPD was slightly below 3 (2.68). Pérez-
Marín et al. (34) using a monochromator instrument and
analyzing the sample in a static environment reported the lowest
SECV values and the highest RPD values for crude protein
(0.55% and 5.84, respectively). The improvement in results in
this case was probably due to the wider wavelength range used
for calibrations (400–2500 nm).

Equations for crude fiber developed with the diode-array
instrument showed R2 values of 96% which, together with RPD
values of 5.12, indicated very good accuracy and precision for
this parameter. However, results obtained with the monochro-
mator were better, and differences between instruments were
slightly higher than those observed for crude protein. The diode-
array instrument seems to have encountered more difficulties
when predicting this constituent. This was also evident in the
larger number of latent variables used by the model developed
with the diode-array instrument. Comparison with the results
reported by other authors using grating monochromators shows
that the R2 and SECV values obtained here with the diode-
array instrument compare quite well with those recorded by
Verheggen et al. (36), Büchman et al. (39), and Aufrère et al.
(38), all of whom used ground samples. However, De Boever
et al. (37), Xicatto et al. (40), and White and Rouvinen-Watt

(41) obtained poorer results with RPD values lower than 3. This
is attributable to the use of calibration sets with more reduced
SD, due to the inclusion of feeds intended for a single species.
Cizmar et al. (42) recorded a lower SD (0.6%) but RPD failed
to attain the value of three, also due to a reduced SD, despite
a larger number of calibration samples. Pérez-Marín et al. (34)
obtained RPD and SECV values (7.06 and 0.57%, respectively)
similar to those obtained here with the monochromator,
confirming that these instruments performed better for the
prediction of crude fiber. This better performance can be related
to the sensitivity for chemical outlier detection. The monochro-
mator instrument removed more samples as chemical outliers
and probably those samples were real chemical outliers because
the SECV was lower than with the diode-array instrument,
although the mean, SD, and range of calibration set were similar
with both instruments. It seems that moving from current table-
top-sized NIRS instruments (i.e., FNS-6500) to portable diode-
array instruments may compromise resolution, signal-to-noise
ratio, sensitivity to outlier detection, and therefore performance.

Most used NIR diode-array instruments cover the range
900–1700 nm and have a price that is half of the conventional
scanning monochromators. However, modern NIR diode-array
instruments extend the ranges to 2500 nm, but the cost of the
instrument rises as the spectral range increases (43). From Table
5, which shows the equations obtained using the grating
instrument and the full spectral range (400–2500 nm), it can be
derived that, upon enlarging the spectral range up to 1700 nm,
a reduction in the SECV values for the prediction of CP and
CF is obtained.

NIRS Calibration Development for Prediction of Ingredi-
ent Composition. The European rules and measures relating
to the circulation of feed materials and compound feedstuffs
highlight the importance of a detailed description of the
ingredients used in the manufacture of feedstuffs. For this
comparative study, sunflower meal was selected as representa-
tive of ingredients present in high amounts in the feed samples

Figure 4. Frequency histograms after chemical outlier elimination for sunflower meal with monochromator (a1) and with diode-array instrument (a2) and
mineral-vitamin premix with monochromator (b1) and with diode-array instrument (b2).
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used here and mineral-vitamin premix as representative of
ingredients present in low amounts.

A larger number of spectral outliers was detected before
calibration using set 2 (H > 3), but no samples displayed H >
10 either with the monochromator or with the diode-array
instrument. However, there were several t outlier samples,
especially with the diode-array instrument for sunflower meal.
Generally speaking, as Figure 4 shows, histograms differed from
the ideal rectangular-shaped distribution (24), but this is a
constraint that must be accepted when dealing with real-process
samples.

Table 6 shows performance statistics of NIRS equations
developed for predicting the percentage of sunflower meal and
mineral-vitamin premix included in compound feeds, using set
2 as calibration set, scanned with the two instruments.

R2 and RPD values showed an excellent predictive ability
for determining inclusion percentage of sunflower meal using
the diode-array instrument. The accuracy and precision obtained
were even slightly better than those recorded with the grating
monochromator, although the number of latent variables used
by the model was higher.

Results obtained here compare quite well with those (R2 )
0.98, SECV ) 0.94) reported by Pérez-Marín et al. (34) with
intact samples, using a grating monochromator and a wider
wavelength range (400–2500 nm). However, Xicatto et al. (40)
developed a calibration for compound rabbit feeds and recorded
RPD values of 1.76 in validation for sunflower meal. The fact
that results were less good than those obtained here may be
linked to the lower SD of the populations used.

R2, RPD, and SECV values showed similar degrees of
accuracy and precision for determining the percentage inclusion
of mineral-vitamin premix in feed compounds with both
instruments studied. Figures 4b1 and 4b2 confirm the similar
performance of the two instruments. Although RPD values failed
to attain the minimum recommended for quantitative analysis,
results are encouraging for a minor ingredient present in feed
compound in very low amounts, particularly given that added
minerals do not absorb in the near infrared region. Pérez-Marín
et al. (34) reported higher values of RPD (3.51) for this ingredient,
using a wider wavelength range (400–2500 nm) and also a
population with a better coverage of the ingredient’s range.

Calibration equations for the full spectral range (400–2500
nm) using the grating monochromator instrument were also
developed (Table 6) and showed a reduction in the SECV for
sunflower meal and mineral-vitamin premix.

Results for all parameters studied suggest that calibrations
developed with the low-cost diode-array instrument were
remarkably accurate, even in dynamic conditions. This good
performance may be due in part to the larger scanning area:
roughly 150 cm2 for the diode array on the conveyor belt (94
cm2 for the grating). This is higher than the scanning area
recommended by Brimmer and Hall (44) (60 cm2 or more) in
order to improve reproducibility of collected NIR spectra when
pellets, tablets, or flakes with highly heterogeneous presentation
are being analyzed.

Further studies are needed to evaluate if diode-array instru-
ments with extended spectral range, up to 1700 nm, may bring
significant improvement for quality control of other constituents
and ingredients in compound feeds.

The results obtained, together with the speed of response and
the lower price of diode-array instruments, suggest their viability
for use in real online industrial environments. On-site NIRS controls
at different stages in the feed industry would make official
inspections easier for the authorities and also allow manufacturers

to exercise real-time process control, thus ensuring final product
quality and minimizing complaints and product recalls.

ABBREVIATIONS USED

NIRS, near-infrared reflectance spectroscopy; VIS, visible;
R, reflectance; CP, crude protein; CF, crude fiber; SFM,
sunflower meal; MVP, mineral-vitamin premix; SD, standard
deviation; N, number of samples of the equation; PLS, partial
least-squares; MPLS, modified partial least-squares; PCR,
principal component regression; R2, coefficient of determination,
fraction of explained variance for cross validation; SECV,
standard error of cross-validation; RPD, ratio of the standard
deviation divided by the SECV; SNV, standard normal variate;
DT, detrending; LV, latent variables.
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